An Approach to Estimate the National Burden of RSV-Associated Respiratory Illness Hospitalization Using Sentinel Surveillance Data

Jocelyn Moyes and Stefano Tempia
(NICD)
Center for Respiratory Diseases and Meningitis,
National Institute for Communicable Diseases,
Johannesburg, South Africa
Background

1. Obtaining the National Burden (rates and numbers) of RSV-associated severe illness is important for informed decisions on interventions.

2. A rapid assessment methodology of the national burden of influenza-associated severe respiratory illness using sentinel surveillance data has been developed.

3. Such methodology can be adapted to estimate the national burden of RSV-associated severe respiratory illness.
Data Needs

- **RSV proportion positive**: from one or more sentinel hospitals where laboratory-confirmed RSV surveillance is conducted by pre-specified age groups.

- **Rates of SARI/LRTI**: from one or more sentinel hospitals or Province/administrative division within pre-specified age groups.

- **Mid-year population estimates**: from projection of census data by:
 - Pre-specified age groups.
 - Province/administrative division.
 - Year (for the study period – usually 3-5 years are included).
Data Needs

- **Demographic and Health Survey (DHS):** ideally conducted in years close to the study period.

- **Healthcare Utilization Survey (HUS):** conducted in the area where SARI/LRTI rates are estimated. This is needed only for the estimation of non-medically-attended illness.
Estimation Approach – Step 1

Estimate SARI/LRTI at sentinel hospital(s) or Province/administrative division (Base Province).
(see also WHO Manual on Estimation of Influenza Disease Burden)

If rates are obtained from a sentinel hospital use that rate as proxy for the Province/administrative division.

Output: SARI/LRTI hospitalization rates in the Base Province/Administrative Division
Estimation Approach – Step 2.1

Adjust SARI/LRTI rates from the base province/administrative division to those of other Provinces/administrative divisions based on differential prevalence of known risk factors for pneumonia from DHS (usually measured):

- Malnutrition (children only)
- Low birth weight (children only)
- Non-exclusive breastfeeding (children only)
- Indoor air pollution (children and adults)
- Crowding (children and adults)
- HIV infection (children and adults)
Estimation Approach – Step 2.2

Adjust SARI/LRTI rates from the base province/administrative division to those of other provinces/administrative division based on differential healthcare seeking behavior for Acute Respiratory Illness (ARI) from DHS (usually measured).

Output: SARI/LRTI hospitalization rates in the Other Province/Administrative Divisions
Estimation Approach – Step 3

Multiply Provincial/administrative division SARI/LRTI rates by the RSV proportion positive from laboratory confirmed RSV surveillance conducted at sentinel hospitals.

Output: RSV-associated SARI/LRTI hospitalization rates by Province/Administrative Division
Estimation Approach – Step 4

Multiply Provincial/administrative division RSV-associated SARI/LRTI rates by the provincial/administrative division mid-year population estimates.

Output: Number of RSV-associated SARI/LRTI hospitalizations by Province/Administrative Division
Estimation Approach

- If HUS data on non-medically-attended illness for SARI/LRTI are available non-medically-attended RSV-associated severe respiratory illness can be obtained using the same approach (Steps 1 to 3).
Influenza Example from Zambia

TABLE 1 Estimated mean annual numbers and rates of severe acute respiratory illness and influenza-associated severe acute respiratory illness hospitalizations, Zambia, 2011-2014

<table>
<thead>
<tr>
<th>Age-group (in years)</th>
<th>SARI hospitalizations</th>
<th>Influenza-associated SARI hospitalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (95% CI)</td>
<td>Rate (95% CI)*</td>
</tr>
<tr>
<td><1</td>
<td>57,449 (34,642-80,256)</td>
<td>11,548.3 (6,963.6-16,133)</td>
</tr>
<tr>
<td>1-4</td>
<td>37,775 (22,136-53,414)</td>
<td>1,898.4 (1,112.5-2,684.3)</td>
</tr>
<tr>
<td>5-24</td>
<td>6,525 (4,626-8,424)</td>
<td>95.2 (67.5-122.9)</td>
</tr>
<tr>
<td>25-44</td>
<td>9,708 (6,737-12,679)</td>
<td>297.8 (206.7-388.9)</td>
</tr>
<tr>
<td>45-64</td>
<td>4,211 (3,045-5,377)</td>
<td>385.8 (278.9-492.7)</td>
</tr>
<tr>
<td>≥65</td>
<td>3,000 (2,106-3,894)</td>
<td>794.3 (557.6-1,031.0)</td>
</tr>
<tr>
<td><5</td>
<td>95,223 (67,037-123,409)</td>
<td>3,828.4 (2,695.2-4,961.6)</td>
</tr>
<tr>
<td>≥5</td>
<td>23,444 (16,083-30,805)</td>
<td>202.5 (138.9-266.1)</td>
</tr>
<tr>
<td>All</td>
<td>118,668 (82,948-154,386)</td>
<td>843.6 (589.7-1,097.5)</td>
</tr>
</tbody>
</table>

Province

- **Central**: 10,148 (7,215-13,081) 727.8 (517.5-938.1) 529 (376-682) 38.1 (27.3-49.2)
- **Copperbelt**: 20,450 (13,988-26,912) 981.6 (671.4-1,291.8) 1,066 (729-1,403) 51.2 (35.0-67.4)
- **Eastern**: 15,328 (10,837-19,819) 902.2 (637.9-1,166.5) 800 (566-1,034) 47.1 (33.3-60.9)
- **Luapula**: 7,725 (5,098-10,352) 731.9 (483.1-980.7) 402 (265-539) 38.1 (25.1-51.1)
- **Lusaka**: 21,843 (15,421-28,265) 889.7 (628.1-1,151.3) 1,132 (799-1,465) 46.1 (32.5-59.7)
- **Muchinga**: 5,949 (4,123-7,775) 774 (536.4-1,011.6) 310 (215-405) 40.4 (28.0-52.8)
- **North Western**: 7,439 (5,334-9,544) 968.7 (694.6-1,242.8) 388 (278-498) 50.6 (36.3-64.9)
- **Northern**: 8,296 (5,674-10,918) 692.9 (473.9-911.9) 432 (295-569) 36.1 (24.7-47.5)
- **Southern**: 13,709 (9,624-17,794) 804.3 (564.6-1,044) 715 (502-928) 42.0 (29.5-54.5)
- **Western**: 7,781 (5,602-9,960) 826 (594.7-1,057.3) 407 (293-521) 43.2 (31.1-55.3)

SARI, severe acute respiratory illness; CI, confidence intervals.

*Rates expressed per 100,000 population.
Thank you!!!

(Questions?)