Preliminary end-of-season estimates of 2016–17 seasonal influenza vaccine effectiveness against medically attended influenza from the US Flu VE Network

Brendan Flannery, PhD

I-MOVE 10th Annual Meeting
Veyrier du Lac, 25 May, 2017
US Flu VE Network sites and principal investigators

Kaiser Permanente Washington Health Research Institute
 Mike Jackson
 Lisa Jackson

Baylor Scott and White Health
 Manju Gaglani

Marshfield Clinic Research Institute
 Ed Belongia
 Huong McLean

University of Michigan
 Arnold Monto
 Emily Martin

University of Pittsburgh
 Rick Zimmerman
 Tricia Nowalk
US Flu VE Network Methods

Enrollees: Outpatients aged >6 months with acute respiratory illness with cough ≤7 days duration

Dates of enrollment: November 28, 2016–April 14, 2017

Design: Test-negative design

- Comparing vaccination odds among influenza RT-PCR positive cases and RT-PCR negative controls
- Vaccination status: receipt of at least one dose of any 2016–17 seasonal flu vaccine according to medical records, immunization registries, and/or self-report

Analysis: VE = (1 – adjusted OR) x 100%

- Adjustment for study site, age, sex, self-rated general health status, race/Hispanic ethnicity, interval (days) from onset to enrollment, and calendar time
Preliminary 2016-17 Results

- 7410 enrolled from Nov 28, 2016–Apr 14, 2017 at 5 sites
- 2073 (28%) influenza RT-PCR positive
- 5323 (72%) influenza RT-PCR negative

Cases enrolled by (sub)type, N=2073

- H3N2 (1364) (66%)
- B/Victoria (62) (3%)
- B/Yamagata (579) (28%)
- A, unsubtyped (30) (1%)
- H1N1pdm09 (25) (1%)
- B/no lineage (8)
Number of enrolled participants by influenza RT-PCR result and percent positivity by week of onset

![Graph showing number of enrollees and percent positivity by week of onset.](image-url)
Interim (February) vaccine effectiveness against medically attended influenza, 2016–17

<table>
<thead>
<tr>
<th>Any influenza A or B virus</th>
<th>Influenza positive</th>
<th>Influenza negative</th>
<th>Vaccine Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N vaccinated /Total (%)</td>
<td>N vaccinated /Total (%)</td>
<td>Unadjusted VE % 95% CI</td>
</tr>
<tr>
<td>Overall</td>
<td>333/744 (45)</td>
<td>1317/2400 (55)</td>
<td>33 (21 to 44) 48 (37 to 57)</td>
</tr>
<tr>
<td>Age group (yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mos–8</td>
<td>32/97 (33)</td>
<td>330/614 (54)</td>
<td>58 (33 to 73) 53 (22 to 72)</td>
</tr>
<tr>
<td>9–17</td>
<td>36/122 (30)</td>
<td>92/247 (37)</td>
<td>29 (-12 to 56) 32 (-20 to 61)</td>
</tr>
<tr>
<td>18–49</td>
<td>89/208 (43)</td>
<td>363/783 (46)</td>
<td>13 (-18 to 36) 19 (-17 to 43)</td>
</tr>
<tr>
<td>50–64</td>
<td>76/189 (40)</td>
<td>261/425 (61)</td>
<td>58 (40 to 70) 58 (38 to 72)</td>
</tr>
<tr>
<td>≥65</td>
<td>100/128 (78)</td>
<td>271/331 (82)</td>
<td>21% (-31 to 52) 46 (4 to 70)</td>
</tr>
</tbody>
</table>

* Multivariate logistic regression models adjusted for site, age, sex, race/ethnicity, self-rated general health status, interval from onset to enrollment, and calendar time.
Interim (February) vaccine effectiveness against medically attended influenza by virus type, 2016–17

<table>
<thead>
<tr>
<th></th>
<th>Influenza positive</th>
<th>Influenza negative</th>
<th>Vaccine Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N vaccinated</td>
<td>(%)</td>
<td>N vaccinated</td>
</tr>
<tr>
<td></td>
<td>/Total (%)</td>
<td></td>
<td>/Total (%)</td>
</tr>
<tr>
<td>Influenza A/H3N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>282/595 (47)</td>
<td>1317/2400 (55)</td>
<td>26 (11 to 38)</td>
</tr>
<tr>
<td>Age group (yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mos–8</td>
<td>24/68 (35)</td>
<td>330/614 (54)</td>
<td>53 (21 to 72)</td>
</tr>
<tr>
<td>9–17</td>
<td>28/94 (30)</td>
<td>92/247 (37)</td>
<td>29 (-19 to 57)</td>
</tr>
<tr>
<td>18–49</td>
<td>73/168 (43)</td>
<td>363/783 (46)</td>
<td>11 (-24 to 36)</td>
</tr>
<tr>
<td>50–64</td>
<td>70/154 (45)</td>
<td>261/425 (61)</td>
<td>48 (24 to 64)</td>
</tr>
<tr>
<td>≥65</td>
<td>87/111 (78)</td>
<td>271/331 (82)</td>
<td>20 (-37 to 53)</td>
</tr>
<tr>
<td>Influenza B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>23/90 (26)</td>
<td>1317/2400 (55)</td>
<td>72 (54 to 83)</td>
</tr>
</tbody>
</table>

* Multivariate logistic regression models adjusted for site, sex, race/ethnicity, self-rated general health status, interval from onset to enrollment, and calendar time.
Interim vs prelim. end-of-season vaccine effectiveness against medically attended influenza, 2016–17

Note: Multivariate logistic regression models adjusted for site, age, sex, race/ethnicity, self-rated general health status, interval from onset to enrollment, and calendar time.
Summary of 2016-17 flu vaccine effectiveness

- Preliminary end-of-season results for 2016–17 season indicate vaccine effectiveness of 43% against medically attended influenza
 - Interim and prelim. end-of-season estimates similar to previous seasons when vaccine was well matched to circulating influenza viruses
- Significant protection against circulating influenza A(H3N2) and B viruses (predominantly B/Yamagata)
VE against influenza A (H3N2) viruses

- Interim VE of 43% against A (H3N2) similar to antigenically matched H3N2 viruses
 - 2011-12 (39%) and 2012-13 (39%)
 - Meta-analysis\(^1\) of test-negative VE studies: 33% (26% - 39%)
- VE against A (H1N1)pdm09 (61%) and B viruses (54%) tend to be higher\(^1\)
- A (H3N2) viruses have required more frequent vaccine updates
- Candidate A (H3N2) vaccine viruses more often have antigenic changes after adaptation to growth in eggs
- Efforts ongoing to improve VE against A (H3N2) viruses

\(^1\) Belongia et al. Lancet Infect Dis, 2016
US Flu VE Network

- **University of Pittsburgh Schools of the Health Sciences and UPMC**: Richard K. Zimmerman, Mary Patricia Nowalk, Todd M. Bear, Heather Eng, Samantha Ford, Krissy K. Moehling, Jonathan M. Raviotta, Sean Saul, Terrie Sax, Michael Susick, G.K. Balasubramani, Rina Chabra, Edward Garofolo, Philip Iozzi, Barbara Kevish, Donald B. Middleton, Christopher Olbrich, Evelyn C. Reis, Leonard Urbanski, John V. Williams, Monika Johnson

- **Baylor Scott and White Health, Texas A&M University Health Science Center College of Medicine**: Manjusha Gaglani, Kempapura Murthy, Anne Robertson, Ashley Kossie, Michael Smith, Vanessa Hoelscher, Lydia Clipper, Kevin Dunlap, Crystal Hodges, Teresa Ponder, Ines Nestor, Deborah Furze, Mary Kylberg, Martha Zayed, Melissa Zdroik, Kimberley Walker, Marcus Volz, Arundhati Rao, Robert Fader, Yolanda Muno-Maldonado, Lea Mallett, Hania Wehe-Janek, Madhava Beeram, Michael Reis, Jennifer Thomas, Jaime Walkowiak, Jeremy Ray, Renee Day, Deborah Price, Jennifer Fox

- **CDC**: Alicia M. Fry, Swathi N. Thaker, Sarah Spencer, LaShondra Berman, Angie Foust, Wendy Sessions, Joseph Bresee, Erin Burns, Jerome Tokars, Jackie Katz, Daniel Jernigan
Thank you

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.