Animal Influenza Surveillance: Strengthening Activities in Latin America

Stacey Schultz-Cherry
Member (Professor), Department of Infectious Diseases
Deputy Director WHO CC
St Jude Children’s Research Hospital
Memphis, TN USA
Not Limited to H5N1 and H7N9…
Not Just Avian Influenza! Swine Influenza

Nat Commun 2015
Influenza in Animals and Birds in Latin America?
NIAID Centers of Excellence for Influenza Research and Surveillance (CEIRS)

PI – Richard Webby
St. Jude Children’s Research Hospital
Memphis, TN

PI – John Treanor
University of Rochester
Rochester, NY

Co-PI – David Topham

PI – Adolfo Garcia-Sastre
Mt. Sinai School of Medicine
New York, NY

PI – Richard Rothman
Johns Hopkins University
Baltimore, MD

Co-PI – Dick Comans

Co-PI – Stacey Schultz-Cherry

Updated 3/2014
Avian Surveillance Locations

Swine Surveillance Locations

AFRICA

USA

Colombia

Chile

China

Hong Kong SAR

Vietnam
Why Colombia and Chile?

South American Surveillance

Original Goal: to determine the prevalence and diversity of influenza viruses in Colombia and Chile. Initiated 2010 and 2015 respectively.

Locations: 4 Colombian sites (Santa Marta, Medellin, Bogota, Los Llanos). 15 Chilean sites around Santiago.

Species: Wildbirds (environmental samples), swine, domestic birds (live animal markets, backyard, industry, captive). Have done equine, canine, exotics, anything that moves…
Risk Assessment Pipeline at St Jude

Risk to humans
- H5, H7, H2
- Antigenically novel H1 or H3

Risk to specific group
- Poultry – H5, H7 and spill over events
- Swine – novel virus

- Molecular determinants of virulence (full genome)
- Receptor binding specificity
- Growth in primary human (swine) respiratory cells
- Antiviral susceptibility
- Pathogenesis in mice, chickens, swine, ferrets
- Transmission in ferrets
- Population-wide immunity

Algorithm to predict risk
(CDC IRAT)
Influenza In Colombia?

- Is there influenza virus?
- If yes,
 - Species?
 - Prevalence?
 - Diversity?
 - Source?
 - Epi/ecology?
 - Co-infections?
 - Risk?

Collaborators: Facultad de University of Wisconsin Veterinary School (US), Medicina Veterinaria y Zootecnia, Universidad de los Llanos, Villavicencio, Salud Tropical, Universidad de Antioquia
Avian Influenza In Colombia?
Limited but…

LBM H11

<table>
<thead>
<tr>
<th>Table 1 Prevalence of influenza viruses by species as determined by RT-qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Order Anseriformes</td>
</tr>
<tr>
<td>Domestic goose (Anser anser domesticus)</td>
</tr>
<tr>
<td>Domestic duck (Anas platyrhynchos domesticus)</td>
</tr>
<tr>
<td>Order Galliformes</td>
</tr>
<tr>
<td>Common quail (Coturnix coturnix)</td>
</tr>
<tr>
<td>Indian peafowl (Pavo cristatus)</td>
</tr>
<tr>
<td>Common pheasant (Phasianus colchicus)</td>
</tr>
<tr>
<td>Helmeted guineafowl (Numida meleagris)</td>
</tr>
<tr>
<td>Japanese quail (Coturnix japonica)</td>
</tr>
<tr>
<td>Turkey (Meleagris gallopavo)</td>
</tr>
<tr>
<td>Domestic chicken (Gallus gallus domesticus)</td>
</tr>
<tr>
<td>Order Columbiformes</td>
</tr>
<tr>
<td>Rock dove (Columba livia)</td>
</tr>
<tr>
<td>Unknown (environmental)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Influenza In Colombia

Yes

SWINE
Primarily pdm H1N1 Until Recently...

2015 classical Swine H1

H3N2 Humano y porcino

pdm H1N1

H1N1
What About Chile?

Goal: to determine the prevalence and diversity of influenza viruses in Chile. 2013 – 2014 quarterly. 2015 – present monthly

Locations: Risk-based surveillance. 15 sites Santiago. Expanding to Arica and Punta Arenas

Species: *Focus wild birds and BPS*

Results to date:
128 isolates!
Many more sequences

Yellow-billed teal
Stilt
Gulls
Avian Influenza in Chile!
Chilean AIV are Reassortants

<table>
<thead>
<tr>
<th>Virus</th>
<th>Subtype</th>
<th>PB2</th>
<th>PB1</th>
<th>HA</th>
<th>NP</th>
<th>NA</th>
<th>M</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/Yellow-billed pintail/Chile/1/2012</td>
<td>H1N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Mallard/Chile/C4079/2015</td>
<td>H1N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/C4126/2015</td>
<td>H1N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/C4256/2015</td>
<td>H1N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/blackish oystercatcher/Chile/C6534/2016</td>
<td>H2N2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Red-fronted coot/Chile/5/2013</td>
<td>H3N6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/C2014/2015</td>
<td>H3N8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/6/2014</td>
<td>H4N6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/7/2014</td>
<td>H4N6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/C918/2015</td>
<td>H4N2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Mallard/Chile/C948/2015</td>
<td>H4N2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/C1267/2015</td>
<td>H5N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/8/2013</td>
<td>H7N6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/9/2013</td>
<td>H7N6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/10/2014</td>
<td>H7N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/11/2014</td>
<td>H7N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/12/2014</td>
<td>H7N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/American oystercatcher/Chile/C1307/2015</td>
<td>H9N2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Grey plover/Chile/C1313/2015</td>
<td>H9N7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed pintail/Chile/C4256/2015</td>
<td>H10N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Black-necked stilt/1/2013</td>
<td>H11N9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Black-necked stilt/2/2013</td>
<td>H11N9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/Yellow-billed teal/Chile/C5750/2016</td>
<td>H12N5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red, North American avian; blue, South American avian; gray, Eurasian; yellow, equine. Alleles for the NS gene indicated as “A” or “B”.
AIV Latitudinal Segment diversity (SA vs NA)

- 0% SA (0/16) (COL)
- 0% SA (0/16) (BR)
- 1.3% SA (3/232) (PE)
- 62.5% SA (5/8) (BOL)
- 55% SA (11/20) (CHI)
- 76.7% SA (43/56) (ARG)
- 73.7% SA (101/137) (CHI)
- 77.7% SA (7/9) (CHI)
- 100% SA (8/8) (ARG)
“High Risk” Subtypes and Spill-Over Events

1. H2, H5, H7, H9 – Mammalian risk = low
 Ferret antisera

2. Spill over BPS
 H7N6 outbreak
SIV in Chilean Swine in BPS?

Unique H1N2

HA – human seasonal H1 1980s
NA – human seasonal N2 early 90s
Internal - pandemic

Bravo-Vasquez N. et al
EID. 2017 Feb;23(2):241-251.
Table. Antigenic characteristics of swine influenza virus (H1N2) from Chile and control viruses *

<table>
<thead>
<tr>
<th>Virus</th>
<th>Subtype</th>
<th>Major clade</th>
<th>Subclade</th>
<th>Mem/87</th>
<th>sw/Chile</th>
<th>sw/IA</th>
<th>sw/NC</th>
<th>sw/IT</th>
<th>CA/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mem/87</td>
<td>hsh1N1</td>
<td>North America</td>
<td>δ</td>
<td>640</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>sw/Chile</td>
<td>sw1N2</td>
<td>North America</td>
<td>δ</td>
<td><</td>
<td>640</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>sw/Iowa</td>
<td>sw1N2</td>
<td>North America</td>
<td>δ1</td>
<td><</td>
<td><</td>
<td>320</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>sw/NC</td>
<td>sw1N1</td>
<td>North America</td>
<td>γ2</td>
<td><</td>
<td><</td>
<td>80</td>
<td><</td>
<td><</td>
<td>80</td>
</tr>
<tr>
<td>sw/IT</td>
<td>sw1N1</td>
<td>Eurasian</td>
<td>-</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td>320</td>
</tr>
<tr>
<td>CA/09</td>
<td>pH1N1</td>
<td>North America</td>
<td>pdm-like</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td>320</td>
</tr>
<tr>
<td>sw/IN</td>
<td>sw1N2</td>
<td>North America</td>
<td>β</td>
<td><</td>
<td><</td>
<td>320</td>
<td>160</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Bravo-Vasquez N. et al
EID. 2017 Feb;23(2):241-25
What’s Next?
Animal-Human Interface
Colombian AHI Studies

Seroepi Disease surveillance
Conclusions

- AIV and SIV are present in South America
- Diversity and prevalence
- Linking AIV in the Americas
- Spill-over events
- SA swine?
- AHI
 - LOTS OF OPPORTUNITIES for collaborations
 - Expand within South America
 - TRAINING
 - CAPACITY BUILDING
Nicolas Bravo
Sean Cherry
Val Cortez
Pam Freiden
Ginna Hargest
Rebekah Honce
Pedro Jimenez
Cydne Johnson
Erik Karlsson
Brandi Livingston
Victoria Meliopoulos
Bridgett Sharp

University of WI
Jorge Osorio
Karl Ciuoderis
Maureen Fox

University of Chile
Chris Hamilton-West

Colombia
Juan Carlos Dib
Andrea Trujillo
Ivan Velez
Wally

FUNDING:

All the veterinarians and field workers in Colombia and Chile